3.318 \(\int \frac{x^2 \sqrt{a+c x^2}}{d+e x} \, dx\)

Optimal. Leaf size=153 \[ -\frac{d^2 \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^4}-\frac{d \left (a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^4}+\frac{d \sqrt{a+c x^2} (2 d-e x)}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e} \]

[Out]

(d*(2*d - e*x)*Sqrt[a + c*x^2])/(2*e^3) + (a + c*x^2)^(3/2)/(3*c*e) - (d*(2*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)
/Sqrt[a + c*x^2]])/(2*Sqrt[c]*e^4) - (d^2*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[
a + c*x^2])])/e^4

________________________________________________________________________________________

Rubi [A]  time = 0.210684, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {1654, 12, 815, 844, 217, 206, 725} \[ -\frac{d^2 \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^4}-\frac{d \left (a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^4}+\frac{d \sqrt{a+c x^2} (2 d-e x)}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

(d*(2*d - e*x)*Sqrt[a + c*x^2])/(2*e^3) + (a + c*x^2)^(3/2)/(3*c*e) - (d*(2*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)
/Sqrt[a + c*x^2]])/(2*Sqrt[c]*e^4) - (d^2*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[
a + c*x^2])])/e^4

Rule 1654

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{a+c x^2}}{d+e x} \, dx &=\frac{\left (a+c x^2\right )^{3/2}}{3 c e}+\frac{\int -\frac{3 c d e x \sqrt{a+c x^2}}{d+e x} \, dx}{3 c e^2}\\ &=\frac{\left (a+c x^2\right )^{3/2}}{3 c e}-\frac{d \int \frac{x \sqrt{a+c x^2}}{d+e x} \, dx}{e}\\ &=\frac{d (2 d-e x) \sqrt{a+c x^2}}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e}-\frac{d \int \frac{-a c d e+c \left (2 c d^2+a e^2\right ) x}{(d+e x) \sqrt{a+c x^2}} \, dx}{2 c e^3}\\ &=\frac{d (2 d-e x) \sqrt{a+c x^2}}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e}+\frac{\left (d^2 \left (c d^2+a e^2\right )\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{e^4}-\frac{\left (d \left (2 c d^2+a e^2\right )\right ) \int \frac{1}{\sqrt{a+c x^2}} \, dx}{2 e^4}\\ &=\frac{d (2 d-e x) \sqrt{a+c x^2}}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e}-\frac{\left (d^2 \left (c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{e^4}-\frac{\left (d \left (2 c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{2 e^4}\\ &=\frac{d (2 d-e x) \sqrt{a+c x^2}}{2 e^3}+\frac{\left (a+c x^2\right )^{3/2}}{3 c e}-\frac{d \left (2 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^4}-\frac{d^2 \sqrt{c d^2+a e^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{e^4}\\ \end{align*}

Mathematica [A]  time = 0.348231, size = 193, normalized size = 1.26 \[ \frac{-6 c^{3/2} d^3 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )+e \sqrt{a+c x^2} \left (2 a e^2+c \left (6 d^2-3 d e x+2 e^2 x^2\right )\right )-6 c d^2 \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )-\frac{3 \sqrt{a} \sqrt{c} d e^2 \sqrt{a+c x^2} \sinh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{\sqrt{\frac{c x^2}{a}+1}}}{6 c e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

(e*Sqrt[a + c*x^2]*(2*a*e^2 + c*(6*d^2 - 3*d*e*x + 2*e^2*x^2)) - (3*Sqrt[a]*Sqrt[c]*d*e^2*Sqrt[a + c*x^2]*ArcS
inh[(Sqrt[c]*x)/Sqrt[a]])/Sqrt[1 + (c*x^2)/a] - 6*c^(3/2)*d^3*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] - 6*c*d^2*S
qrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(6*c*e^4)

________________________________________________________________________________________

Maple [B]  time = 0.237, size = 448, normalized size = 2.9 \begin{align*}{\frac{1}{3\,ce} \left ( c{x}^{2}+a \right ) ^{{\frac{3}{2}}}}-{\frac{dx}{2\,{e}^{2}}\sqrt{c{x}^{2}+a}}-{\frac{ad}{2\,{e}^{2}}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}+{\frac{{d}^{2}}{{e}^{3}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}-{\frac{{d}^{3}}{{e}^{4}}\sqrt{c}\ln \left ({ \left ( -{\frac{cd}{e}}+ \left ({\frac{d}{e}}+x \right ) c \right ){\frac{1}{\sqrt{c}}}}+\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) }-{\frac{a{d}^{2}}{{e}^{3}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{c{d}^{4}}{{e}^{5}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^2+a)^(1/2)/(e*x+d),x)

[Out]

1/3*(c*x^2+a)^(3/2)/c/e-1/2*d/e^2*x*(c*x^2+a)^(1/2)-1/2/e^2*d*a/c^(1/2)*ln(x*c^(1/2)+(c*x^2+a)^(1/2))+d^2/e^3*
((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)-d^3/e^4*c^(1/2)*ln((-c*d/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2
*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))-d^2/e^3/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e
*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))*a-d^4/e^5
/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*
c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.84752, size = 1710, normalized size = 11.18 \begin{align*} \left [\frac{6 \, \sqrt{c d^{2} + a e^{2}} c d^{2} \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 3 \,{\left (2 \, c d^{3} + a d e^{2}\right )} \sqrt{c} \log \left (-2 \, c x^{2} + 2 \, \sqrt{c x^{2} + a} \sqrt{c} x - a\right ) + 2 \,{\left (2 \, c e^{3} x^{2} - 3 \, c d e^{2} x + 6 \, c d^{2} e + 2 \, a e^{3}\right )} \sqrt{c x^{2} + a}}{12 \, c e^{4}}, -\frac{12 \, \sqrt{-c d^{2} - a e^{2}} c d^{2} \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - 3 \,{\left (2 \, c d^{3} + a d e^{2}\right )} \sqrt{c} \log \left (-2 \, c x^{2} + 2 \, \sqrt{c x^{2} + a} \sqrt{c} x - a\right ) - 2 \,{\left (2 \, c e^{3} x^{2} - 3 \, c d e^{2} x + 6 \, c d^{2} e + 2 \, a e^{3}\right )} \sqrt{c x^{2} + a}}{12 \, c e^{4}}, \frac{3 \, \sqrt{c d^{2} + a e^{2}} c d^{2} \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 3 \,{\left (2 \, c d^{3} + a d e^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-c} x}{\sqrt{c x^{2} + a}}\right ) +{\left (2 \, c e^{3} x^{2} - 3 \, c d e^{2} x + 6 \, c d^{2} e + 2 \, a e^{3}\right )} \sqrt{c x^{2} + a}}{6 \, c e^{4}}, -\frac{6 \, \sqrt{-c d^{2} - a e^{2}} c d^{2} \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - 3 \,{\left (2 \, c d^{3} + a d e^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-c} x}{\sqrt{c x^{2} + a}}\right ) -{\left (2 \, c e^{3} x^{2} - 3 \, c d e^{2} x + 6 \, c d^{2} e + 2 \, a e^{3}\right )} \sqrt{c x^{2} + a}}{6 \, c e^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/12*(6*sqrt(c*d^2 + a*e^2)*c*d^2*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt
(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 3*(2*c*d^3 + a*d*e^2)*sqrt(c)*log(
-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(2*c*e^3*x^2 - 3*c*d*e^2*x + 6*c*d^2*e + 2*a*e^3)*sqrt(c*x^2 +
 a))/(c*e^4), -1/12*(12*sqrt(-c*d^2 - a*e^2)*c*d^2*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(
a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) - 3*(2*c*d^3 + a*d*e^2)*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)
*sqrt(c)*x - a) - 2*(2*c*e^3*x^2 - 3*c*d*e^2*x + 6*c*d^2*e + 2*a*e^3)*sqrt(c*x^2 + a))/(c*e^4), 1/6*(3*sqrt(c*
d^2 + a*e^2)*c*d^2*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*
(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 3*(2*c*d^3 + a*d*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/s
qrt(c*x^2 + a)) + (2*c*e^3*x^2 - 3*c*d*e^2*x + 6*c*d^2*e + 2*a*e^3)*sqrt(c*x^2 + a))/(c*e^4), -1/6*(6*sqrt(-c*
d^2 - a*e^2)*c*d^2*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a
*c*e^2)*x^2)) - 3*(2*c*d^3 + a*d*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - (2*c*e^3*x^2 - 3*c*d*e^2*x
 + 6*c*d^2*e + 2*a*e^3)*sqrt(c*x^2 + a))/(c*e^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sqrt{a + c x^{2}}}{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**2+a)**(1/2)/(e*x+d),x)

[Out]

Integral(x**2*sqrt(a + c*x**2)/(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.19474, size = 212, normalized size = 1.39 \begin{align*} \frac{2 \,{\left (c d^{4} + a d^{2} e^{2}\right )} \arctan \left (-\frac{{\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} - a e^{2}}}\right ) e^{\left (-4\right )}}{\sqrt{-c d^{2} - a e^{2}}} + \frac{{\left (2 \, c d^{3} + a d e^{2}\right )} e^{\left (-4\right )} \log \left ({\left | -\sqrt{c} x + \sqrt{c x^{2} + a} \right |}\right )}{2 \, \sqrt{c}} + \frac{1}{6} \, \sqrt{c x^{2} + a}{\left ({\left (2 \, x e^{\left (-1\right )} - 3 \, d e^{\left (-2\right )}\right )} x + \frac{2 \,{\left (3 \, c d^{2} e^{7} + a e^{9}\right )} e^{\left (-10\right )}}{c}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

2*(c*d^4 + a*d^2*e^2)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))*e^(-4)/sqrt(
-c*d^2 - a*e^2) + 1/2*(2*c*d^3 + a*d*e^2)*e^(-4)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/sqrt(c) + 1/6*sqrt(c*x
^2 + a)*((2*x*e^(-1) - 3*d*e^(-2))*x + 2*(3*c*d^2*e^7 + a*e^9)*e^(-10)/c)